Reducing Clostridium difficile Infection among Hematology-Oncology Patients Using Ultraviolet Germicidal Irradiation for Terminal Room Disinfection

David Pegues,1 Cheryl Gilmar,2 Mary Denno,3 Steven Gaynes4 and the CDC Epicenters Program
1Division of Infectious Diseases, 2Infection Prevention and Control, 3Nursing Department, 4Environmental Services, Hospital of the University of Pennsylvania, Philadelphia, PA

Background:
- Clostridium difficile forms spores that are resistant to many disinfectants and can persist in the hospital environment for months.
- During 2013 (baseline period, Jan.-Dec. 2013), there were 87 cases of hospital onset C. difficile infection (CDI) among patients on three Hematology/Oncology units—a rate 5 times higher than that for all other inpatient units combined.
- Cases of CDI continued to occur despite targeted evidence-based interventions and EVS process improvements, including use of bleach for daily and terminal room cleaning of CDI rooms, process monitoring and feedback of cleaning effectiveness.
- We performed a 12-month pre/post evaluation of electronic tracking of UVGI deployment.

Methods:
Setting: Three adult hematology-oncology units with a total of 75 private and 7 semiprivate rooms in a 695-bed tertiary care hospital.

UVGI deployment:
- Targeted CDI or contact precautions rooms for UVGI using an electronic patient flow system (Navicare, Hill-Rom).
- Following terminal room cleaning with bleach, UVGI (Optimum-UV, Clorox Healthcare) was deployed for two 8-minute cycles on either side of the patient bed with the bathroom door left open.
- Two UVGI units and no additional Environmental Service personnel or resources were utilized for this evaluation.

Measurements:
- C. difficile detected by toxin A/B and GDH immunoassay; indeterminate results confirmed by PCR for toxin gene; NHSN GIT definition.
- Compared rates of healthcare onset CDI on study units and non-study units:
- Calculated rate ratios and a mixed-effects Poisson regression model with random effects for unit and time in months.

Results—Impact of UVGI on C. difficile Infection:
- During a 52-week intervention period, UVGI was deployed for 21.1% (542/2569) of all patient discharges on the three study units (mean, 10.4 deployments/week; Figure 2).
- Rates of CDI declined 25% on the study units and increased 16% on non-study units during the intervention vs. baseline period.
- There was a significant association between UVGI use and decline in CDI incidence (Table 1, Figure 3).
 - Study Units: incidence rate ratio [IRR] 0.49; 95% CI, 0.26-0.94 (P=0.03)
 - Non-study units: IRR = 0.63, 95% CI: 0.38-1.06 (P=0.08)
- Impact on CDI driven primarily by one study unit with the highest UVGI deployment:
 - Unit 1: IRR = 0.34, 95% CI 0.12-0.99 (P=0.049)

Process Improvement:
- Weekly reporting of UVGI deployment and room cleaning metrics
- Redeployment of additional Environmental Services associates to second shift (3-11 pm) and cross-training to improve UVGI deployment during peak discharge times.
- Deployment of a second UVGI unit during Sep. 2014.
- Feedback and recognition of associates deploying UVGI.

Conclusions:
- UVGI deployment was associated with a 25% reduction in CDI incidence among high-risk Hematology/Oncology patients over a 12-month evaluation period.
- Reflecting the targeted deployment and short cycle times, UVGI had no negative impact room turn-around time.
- Without additional environmental services staff for the evaluation, innovative administrative and technical solutions were required.
- Spreading deployment of UVGI to other patient-care areas required hiring dedicated environmental service staff.

References:

Contact:
David Pegues, MD
Healthcare Epidemiology, Infection Prevention and Control
Hospital of the University of Pennsylvania, Ground Founders Philadelphia, PA 19104
david.pegues@uphs.upenn.edu 215-614-1614